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Fluctuations around the Steady state in chemical reactions are discussed. 
The connection between the two approaches in the literature, the Langevin 
equation approach and the master equation approach, is shown in terms 
of a path integral. 
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1. I N T R O D U C T I O N  

Cooperative effects in chemical reactions have been of considerable interest 
recently; due to feedback mechanisms in reaction networks, instability 
occurs when some external parameters are set at critical values. ~1-5) This 
phenomenon is very much analogous to second-order phase transitions. The 
analogy has been discussed by many authors. ~,6-1~ It has been predicted 
that the fluctuations of concentrations of chemical species diverge and that 
relaxation of concentrations to the steady state becomes extremely slow. 
The latter may be called "the critical slowing down." 

The anomaly of the fluctuations and the slowing down of the relaxation 
are related. Mazo ~6~ showed that the variance of fluctuations is related to the 
sum of two eigenvalues of the relaxation matrix in the linearized chemical 
kinetic equation. Suppose the relaxation matrix has complex-conjugate 
eigenvalues. Then the variance is divergent when the real part of one of the 
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complex eigenvalues vanishes. The argument of Mazo is based on Lax's 
treatment ~11~ of nonlinear stochastic processes. Nitzan et al. C7~ have shown the 
same results starting from phenomenological rate equations. They linearized 
them around the steady state, and assuming that these linearized equations 
are valid also for describing regression of fluctuations around the steady 
state, they add random forces to the equations, which excite the fluctuations. 
Recently Mashiyama et a l / ~  analyzed the evolution equations for the most 
probable values of concentrations and the variances of fluctuations around 
the most probable values. The evolution equations were derived first by 
van Kampen ~12~ and a systematic derivation and generalization to multi- 
variable cases were given by Kubo et al. (~a~ under the assumption that the 
system size is large. Mashiyama et al. expanded the evolution equations in 
the power of the distance from the critical situations, i.e., in the power of 
so-called bifurcation parameters/14~ The steady values of variances are found 
to be divergent as the critical values of parameters are approached. 

At this point, it is worthwhile looking into the relations between the 
approach of Nitzan et al. (the so-called Langevin equation approach) and 
the approach of Mashiyama et al. (the so-called master equation approach). 
The key is to derive a weight of an evolution path of concentrations from 
the master equation and compare the weight with the Langevin equation. 
which is also an equation for the evolution path. If we identify the most 
probable evolution, which maximizes the path weight, with the phenomeno- 
logical kinetic rate equation, then the random forces play the role of de- 
scribing the motion of less probable evolutions. Thus we can specify the 
nature of random forces precisely by the parameters appearing in the 
master equation. We will find that the critical anomaly of fluctuations is due 
to the critical slowing down of relaxation, not due to the nature of random 
forces, which have no anomaly in the critical situations. 

2. RELATION BETWEEN THE M A S T E R  E Q U A T I O N  
A N D  THE L A N G E V I N  E Q U A T I O N  

Suppose we have a system of several reacting chemical species. The 
number of molecules of the ith species is denoted by N~ (i = 1, 2 ..... M). 
The stochastic processes associated with the reactions among these chemical 
species are described by the master equation for the probability P(N1 ..... NM, t) 

of having N~ molecules of the ith species (i = 1 ..... M) at time t: 

(~/0t)P(N, t) = - ~  W(N --~ N + r)P(N, t) 
l" 

+ ~ W(N - r--+ N)P(N - r, t) 
lg 

(1) 
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where we use the notations N = (N1,..., N~) for the populations and r = 
(rl,..., ru) for jumps of the populations. We assume the transition prob- 
ability W(N -+ N + r) takes the form 

W(N --+ N + r) = f2w(x; r) (2) 

where x = (xl ..... xM) are the concentrations, x~ = N~/f2, and f2 is the volume 
of the system. It was shown in a previous publication ~13~ that the funda- 
mental solution of Eq. (1) is given in terms of the path integral; if we define 
the fundamental solution G(x, t Ix0, to) by 

P(x, t) = f dx0 G(x, t lXo, t0)e(xo, to) (3) 

then the asymptotic form of the fundamental solution for large ~q is given 
in the form of a path integral, 

G(x, t ,Xo, to) = f ~((r) exp[fI ftto ds L(x(s; cO, ~(s; a)) ] (4) 

where the summation is over all paths x(s; ~), to ~< s ~< t, which are param- 
etrized by o and satisfy the initial and the final conditions x( t0)=  Xo, 
x(t) = x. The Lagrangian L(x(s), :~(s)) is approximately written as 

L(x, R) ~ - ~ ~ {Ci(x) - 2i)(D- 1),s{Cj(x ) - :?j) (5) 
Z,J 

where 

C~(x) = ~ r~w(x; r) (6) 

and (D-1)~j is the inverse matrix of D, which is defined by 

D~j = ~ rfy(x;  r) (7) 
P 

By the definition, the matrix D is positive definite and so is the matrix D-x 
Therefore the rhs of Eq. (5) is negative, 

L~ ~) = - ~  ~ {C,(x) - ~ , } ( D - % { C j ( x )  - So,) <~ 0 (8) 
H 

In the path integral (4), the functional of a path 

[; ] ~(e)  = exp a ds L~ ~), 2(s; or)) (9) 
to 

can be interpreted as a weight of the path ~ and Eqs. (5) and (8) show that 
the path e0 that satisfies the equation 

~o: ~ - G ( x )  = o ( l o )  
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maximizes the weight ~(~). The most probable path (10) can be identified 
with the macroscopic phenomenological equation. Paths other than the 
most probable path eo can be described by introducing an additional term 
fj(t;  a), 

:~s(t; a) - Cs(x(t; a)) = fj(t;  a) (11) 

Then obviously for the most probable path ~o, fj(t;  ao) vanishes. The weight 
of the realization of functions fj(t;  a), j = 1 .... , M, is given by expanding 
the Lagrangian around th e most probable path ao and the resulting expression 
is  

Thus one gets 

and 

dsf,(s; , ,)(D- ~(x(s; ~o)))j~(s; ~)] (12) 

(f,(s; ~)f~(s; ~)) = (1/f2)DAx(s; ~o)) ~(s - s') (13) 

( f ( s ;  a)~ ~ O(1/~) (14) 

Note that the rhs o f  Eq. (13) contains the time explicitly through the 
motion of the most probable path %. Equation (11) can be identified with 
the Langevin equation and its average behavior is the macroscopic evolution; 
in fact, if we put xi = (x~) + 3x~ in the Langevin equation, 

~ = C,(x) + f ( t )  (15) 

and take the average, we obtain 

d(x,>/dt = C,((x)) + �89 ~ [t32C,((x))/Oxj ~x~](3xi 3xk> + (f~(t)> (16) 
r 

The variance (Sxj 3x~) is estimated to be of order l/f2 in the Gaussian 
approximation. Therefore if ( f )  is also of order 1/f~, we obtain the macro- 
scopic equation 

d(x,)/dt = C,((x)) + O(1/f~) (17) 

which is identical to the equation for the most probable path. Therefore we 
can identify f( t)  as the random force in the Langevin equation. From Eq. 
(13) the variance of the random force is found to be proportional to the 
second moment D, which is a function of the most probable path e0. In 
general the random force is not white noise. When the macroscopic state 
described by Eq. (10) or (17) reaches the steady state x ~t, the process of the 
random force is white noise, 

~f(s; ~)fj(s  '; ~)) = ( 1 / ~ )  D,j (x  ~~ ~(s - s ') (18) 
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Using Eqs. (11) and (18), we can evaluate the fluctuation around the 
macroscopic steady state x ~t by putting x~(t) = x~ t + ~x~(t), 

d[ax,(t)]/dt = Z [SC'(x~t)/Sxi] 3x~(t) + f ( t )  (19) 
J 

Writing 

~C~(x~t)/Sxj = - A u (20) 

we obtain the time correlation function as 

(3x~(t) ~xj(0)) = (20r~)) -1 doJ e*Wt(ioo -b A ) - I D ( - i w  + A) -1 (21) 
oo 

where/~ denotes the transposed matrix of A. Thus the fluctuation around the 
steady state is 

L (Sx~ 3xj) = (2~ra) -1 doJ(ioJ + A)-ID(- ioJ  + /~)-1 (22) 
oo 

On the other hand, the ~ expansion (12'13~ of the master equation gives an 
evolution equation for the variance, 

(~x, ~xs), = (1/s (23) 

6-(t) = - Act(t)  - cr(t)A + D (24) 

and the so lu t ion  is 

o-(t) = [ e x p ( - A t ) ] e ( 0 )  e x p ( - A t )  

+ dt' {exp[-A(t  - t')]}D exp[- /~( t  - t ')] (25) 

Thus the steady solution is given by 

est = d , [ exp( -Ar ) ]D exp(-A~-) (26) 

since the initial condition c,(0) will be forgotten as t ~ oe. It can be easily 
shown that Eq. (26) is equivalent to Eq. (22) by using the formula e x p ( - A t )  = 

f~_~ dw ei~(ico + A)-1. Thus the Langevin equation and the master equation 

give the same form for the variance of fluctuations arouns the steady state. 

It should be noted that the two matrices A and/~ have the same eigenvalues 
~ ,  i = 1,..., M, so the variance is written as a sum of terms such as 
1/07~ + ~j), i , j  = 1 ..... M.  Therefore the variance diverges in the following 
two cases. (i) All the eigenvalues of A are real and at least one of them 
vanishes; (ii) some of the eigenvalues of A are complex and the real part of a 
complex eigenvalue vanishes. In any case, the divergence of the variance is 
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related to the instability of the steady states of the phenomenological equa- 
tions (10) and not to the random forces. The variance D of the random forces 
is not necessarily divergent at the onset of instability. The vanishing of the 
restoring force [i.e., Re(A) -+ 0] gives rise to an accumulation of fluctuations 
excited by the random forces f ( t ) .  In the appendix we give some examples. 

3. C O N C L U D I N G  R E M A R K S  

Throughout  this paper, we assumed that the chemical process under 
discussion was given in terms of the concentrations. However, as pointed 
out by Nicolis, ~15~ what really happens in a chemical reaction is that there are 
transitions among the internal states of the molecules as well as changes in 
the population of each component. If these internal degrees of freedom are 
taken into account, then the change in the populations of the chemical 
components should obey a non-Markovian process. Therefore, the present 
analysis is valid only when the relaxation of the internal states is very rapid 
in comparison with the change in populations of the species. 

A P P E N D I X .  E X A M P L E S  
i 

In the linear rate equation for the concentration X of a species, 

dX/dt = - k X  + I (A.1) 

the first term stands for the spontaneous decay of the species and I is the 
constant input. Correspondingly, we can construct a master equation for 
the number of particles of the species with the following transition prob- 
ability (16,17):  

W ( N - +  N + r) = f k N ,  r = +1 (A.2) 
( I ,  r = - 1  

or in terms of the concentration x - N/s we may write the transition 
probability as 

w(x; r) = ,;kx, r = + 1  ( A . 3 )  
( I ,  r = - 1 

The moments of the transition probability are [see Eqs. (6) and (7)] 

C(x) = ~ rw(x;r )  = - k x  + I (A.4) 
r = ~ : l  

D(x) = ~ r2w(x;r)  = k x  + I (A.5) 
r==~l 

From Eq. (10), the most probable path is given by 

= C(x) = - k x  + I (A.6) 
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which is identical to the kinetic equation and the solution is obviously 

x ( t )  = e - k t [ x ( O )  - ( I / k ) ]  + ( I / k )  (A.7) 

The correlation function of the random force is obtained from Eq. (14), 

( f ( t ;  cr)f(t'; or)> = (1/~q)3(t - t ' ) { k e - ~ t [ x ( O )  - I]  + 2I} (A.8) 

and in the steady state (t--+ ~) ,  

( f ( t ;  o)f(t ' ;  ~)> = (1/s 3 ( t - t ' )  2I (A.9) 

It is noted that the random force in the steady state depends only on the 
input L 

Another and more complex reaction scheme is a model of a nonlinear 
chemical oscillation studied by Lefever and Nicolis, (la) 

d x / d t  = A + x 2 y  - B x  - x ,  d y / d t  = B x  - x 2 y  (A. I0) 

which has a steady state solution 

Xo = A ,  Yo = B / A  (A. 11) 

The eigenvalues of the rate equations linearized about this steady state are 

tz~.2 = �89 (A 2 + 1) _+ [B 2 -  2(A 2 + 1 )B+ (I - A2)2] 1/2} (A.12) 

and the character of the solution about the steady state changes depending 
on the value of B, namely: (i) when B < (1 - A)2, the steady state is a 

J 

stable node, so other solutions tend toward it monotonically; (ii) when 
( 1  - A) < B < 1 + A z = Be, the steady state is a stable focus and other 
solutions tend toward it as damped oscillations; (iii) when Bc < B < 
(1 + ,4) 2, the steady state is an unstable focus; (iv) when B > (1 + A) 2, the 
steady state is an unstable node. Corresponding to the rate equations, we 
construct a master equation for the concentrations of particles of species 
X and Y. The transition probability may be chosen as 

I A ,  rx = 1, r~ = 0  

x2y ,  rx = 1, r u = - 1  

w ( x , y ; r x ,  ru) = ~ B x ,  rx = - 1 ,  ry = 1 

~0 
' rx  = - - l ,  r u = 0 

, otherwise 

For example, the second expression x 2 y  corresponds to the process 2X + Y 
-~ 3X, i.e., two particles of the species X and one particle of the species Y 
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react and give three particles of  the species X. For  this choice of  the transi- 
t ion probability, we have 

C x ( x , y )  = A + x 2 y -  B x -  x 

Cu(x , y )  = B x  - x2y 

Dxx (X ,y )  = A + x2y + B x  + x 
D:c~(x, y )  = - x ~ y  - a x  
Duu(x, y)  = x2y + B x  

It  is obvious that  the equations for  the most  probable  path ~ = C~(x, y) ,  

i = x, y, are identical to the rate equations (A.10). As B approaches Bo in 
the case (ii), the real part  o f  the eigenvalues (A.12) vanishes; */1 + 02 = 
2 Re(~l) oc IB - Be[ ~ 0. Thus the covariances of  fluctuations of  the con- 
centrations diverge as IB - Bc1-1.  The second moments  of  the transition 
probabil i ty give the variance of  the r andom forces, especially at the steady 
state corresponding to the cases (i) and (ii); we have the following ex- 
pressions. 

( f ( t ;  ~)fx(t ' ;  ~r)) = (I/f~)A(A + B) 3(t - t ' )  
(f , ,(t ;  cr)f~(t'; ~)) = ( I / f l ) 2 A B  8(t - t ' )  

( fu( t ;  a)f~(t '  ; ~)) = (1/ f~)AB 8(t - t ' )  
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